This study proposes an alternative method using Na2EDTA to neutralize B. alternatus venom and using it as an immunogen from the start of inoculation to minimize side effects and enhance antivenom production. To achieve this, 1.8 mg/mL of B. alternatus venom (B.aV) was treated with Na2EDTA, and any extra chelate was eliminated by filtering the resulting solution through a Sephadex G-25 column. Two groups of BALB/c mice were immunized subcutaneously on days 1, 15 and 30 with B.aV/Na2EDTA (45, 90, 135 μg/mouse) or B.aV (15, 30, 45 μg/mouse), respectively. Both formulations were emulsified with Freund's adjuvant (complete first and incomplete-booster). Blood samples were collected from each mouse on days 14, 29, 41, and 50 post-first immunization, and serum was separated for antibody detection. Animals were then sacrificed and lungs removed for histological analysis (hematoxylin-eosin). Immunoblotting analysis revealed that the sera from mice inoculated with B.aV/Na2EDTA (anti-B.aV/Na2EDTA) recognized the major venom proteins (20–66 kDa) similarly to the sera from mice inoculated with B.aV (anti-B.aV). The enzyme-linked immunosorbent assay results indicated that the anti-B.aV/Na2EDTA had a higher titer (5.76 × 104) than those the anti-B.aV (1.92 × 104). Additionally, sera from animals immunized with B.aV/Na2EDTA significantly neutralized proteolytic, indirect hemolytic and coagulant activity (p < 0.05). Finally, histological examination of the lungs of mice inoculated with B.aV/Na2EDTA showed normal appearance, while animals inoculated with B.aV showed interstitial lung injury (p < 0.05). In conclusion, the B.aV/Na2EDTA formulation, free of excess Na2EDTA, proved to be a promising candidate as an immunogen for antivenom production.