Additive manufacturing (AM) has become one of the most promising manufacturing techniques in recent years due to the geometric design freedom that this technology offers. The main objective of this study is to explore Composite Extrusion Modelling (CEM) with aluminium as an alternative processing route for aluminium alloys. This process allows for working with pellets that are deposited directly, layer by layer. The aim of the technique is to obtain aluminium alloy samples for industrial applications with high precision, without defects, and which are processed in an environmentally friendly manner. For this purpose, an initial and preliminary study using powder injection moulding (PIM), necessary for the production of samples, has been carried out. The first challenge was the design of a sustainable aluminium-based feedstock. The powder injection moulding technique was used as a first approach to optimise the properties of the feedstock through a combination of water-soluble polymer, polyethyleneglycol (PEG), and cellulose acetate butyrate (CAB) wich produces low CO2 emissions. To do this, a microstructural characterisation was carried out and the critical solid loading and rheological properties of the feedstocks were studied. Furthermore, the debinding conditions and sintering parameters were adjusted in order to obtain samples with the required density for the following processes and with high geometrical accuracy. In the same way, the printing parameters were optimised for proper material deposition.