The shortage of 3He has triggered the search for effective alternative neutron detection technologies for national security applications, including international nuclear safeguards. Any alternative neutron detection technology must satisfy two basic criteria: it must meet a neutron detection efficiency requirement, and it must be insensitive to gamma-ray interference at a prescribed level while still meeting the neutron detection requirement. For nuclear safeguards, a system must perform measurements in the field with a prescribed precision in a specified time. This paper describes an effort to design, model and test an alternatives-based neutron coincidence counter for nuclear safeguards applications. The technology chosen for use in an alternatives-based uranium neutron coincidence collar was boron-lined proportional counters. Extensive modeling was performed of various system configurations and comparisons were made to measurements on a commercial prototype boron-10 based uranium neutron coincidence collar.