PurposeThe purpose of this paper is to examine if temporal aggregation matters in the construction of house price indices and to test the accuracy of alternative index construction methods.Design/methodology/approachFive index construction models based on the hedonic, repeat‐sales and hybrid methods are examined. The accuracy of the alternative index construction methods are examined using the mean squared error and out‐of‐sample technique. Monthly, quarterly, semi‐yearly and yearly indices are constructed for each of the methods and six null hypotheses are tested to examine the temporal aggregation effect.FindingsOverall, the hedonic is the best method to use. While running separate regressions to estimate the index is best at the broader level of time aggregation like the annual, pooling data together and including time dummies to estimate the index is the best at the lower level of time aggregation. The repeat‐sales method is the least preferred method. The results also show that it is important to limit time to the lowest level of temporal aggregation when construction property price indices.Practical implicationsThis paper provides alternative method, the mean squared error method based on an out‐of‐sample technique to evaluate the accuracy of alternative index construction methods.Originality/valueThe introduction of financial products like the property derivatives and home equity insurances to the financial market calls for accurate and robust property price indices. However, the index method and level of temporal aggregation to use still remain unresolved in the index construction literature. This paper contributes to fill these gaps.