Steel reinforced concrete (SRC) frame-reinforced concrete (RC) core tube hybrid structures are widely used in high-rise buildings. Focusing on the progressive collapse behavior of this structural system, this paper presents an experiment and analysis on a 1/5 scaled, 10-story SRC frame-RC core tube structural model. The finite element (FE) model developed for the purpose of progressive collapse analysis was validated by comparing the test results and simulation results. The alternate load path method (APM) was applied in conducting nonlinear static and dynamic analyses, in which key components including columns and shear walls were removed. The stress state of the beams adjacent to the removed component, the structural behavior including inter-story drift ratio and shear distribution between frame and tube were investigated. The demand capacity ratio (DCR) was applied to evaluate the progressive collapse resistance under loss of key components scenarios. The results indicate that the frame and the tube cooperate in a certain way to resist progressive collapse. The core tube plays a role as the first line of defense against progressive collapse, and the frame plays a role as the second line of defense against progressive collapse. It is also found that the shear distribution is related to the location of the component removed, especially the corner column and shear walls.
Read full abstract