Structure-based drug design frequently operates under the assumption that a single holo structure is relevant. However, a large number of crystallographic examples clearly show that multiple conformations are possible. In those cases, the protein reorganization free energy must be known to accurately predict binding free energies for ligands. Only then can the energetic preference among these multiple protein conformations be utilized to design ligands with stronger binding potency and selectivity. Here, we present a computational method to quantify these protein reorganization free energies. We test it on two retrospective drug design cases, Abl kinase and HSP90, and illustrate how alternative holo conformations can be derisked and lead to large boosts in affinity. This method will allow computer-aided drug design to better support complex protein targets.