Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction. Disrupted trace amine circuits have been implicated in various clinical neuropsychiatric disorders, including schizophrenia, Parkinson's disease, addiction, depression and anxiety. Dysregulated TAAR signaling has been linked in rodents to altered dopamine and serotonin neurotransmission, known to be associated with these psychiatric conditions. Complementing rodent genetic and pharmacological evidence, zebrafish (Danio rerio) are rapidly becoming a novel powerful model system in translational neuropharmacology research. Here, we review trace amine/TAAR neurobiology in zebrafish and discuss their developing translational utility as pharmacological and genetic models for unraveling the role of trace amines in CNS processes and brain disorders.
Read full abstract