This study investigates the effects of climate change on the irrigation demand of vegetable crops caused by alteration of climate parameters affecting evapotranspiration (ET), plant development, and growing periods in Central Europe. Utilizing a model framework comprising two varying climate scenarios (RCP 2.6 and RCP 8.5) and two regional climate models (COSMO C-CLM and WETTREG 2013), we calculate the daily crop water balance (CWBc) as a measure for irrigation demand based on reference ET and the temperature-driven duration of crop coefficients until 2100. Our findings for onion show that rising temperatures may shorten cultivation periods by 5 to 17 days; however, the irrigation demand may increase by 5 to 71 mm due to higher ET. By reaching the base temperatures for onion growth earlier in the year, cultivation start can be advanced by up to 30 days. Greater utilization of winter soil moisture reduces the irrigation demand by up to 21 mm, though earlier cultivation is restricted by frost risks. The cultivation of thermophilic crops, however, cannot be advanced to the same extent, as shown for bush beans, and plants will transpire more strongly due to longer dry periods simulated for summer. The results underscore the need for adaptive crop and water management strategies to counteract the simulated changes in phenology and irrigation demand of vegetable crops. Therefore, special consideration must be given to the regional-specific and model- and scenario-dependent simulation results.