Anesthetics are believed to produce anesthesia through the reversible inhibition of synaptic transmission but how this is accomplished is unknown. Based on earlier studies of anesthetic-enzyme-phospholipid interaction, we surmised that anesthetics may inhibit synaptic transmission by increasing synaptic membrane lateral pressure thereby inhibiting phospholipid hydrolysis, membrane transduction and synaptic transmission. As a first approximation towards investigating this concept, we hypothesized that anesthetics modulate the rate of phospholipase C hydrolysis of a lipid monolayer through its effects on surface pressure. The relationship between the hydrolysis rate of a monolayer of dipalmitoylphosphatidylcholine [ 14C-choline] (DPPC) by phospholipase C (Plase C) and monolayer surface pressure (SP) as altered by either halothane, isoflurane, or by physical compression at 37°C was studied. The decline in surface 14C-activity as the [ 14C]choline diffuses into the Krebs-Ringer bicarbonate buffer aqueous subphase is estimated as the rate of DPPC hydrolysis measured by the initial slope method. DPPC hydrolysis was about 300 cpm/min and constant between SP of 0 to 20 dynes/cm. Higher SP between 25 and 30 dyne/cm, whether induced by halothane, isoflurane or physical compression, increased the rate of hydrolysis by 5-fold to a peak rate of about 1600 cpm/min at 25–30 dynes/cm. At a SP above 32 dynes/cm, DPPC hydrolysis abruptly ceased. We conclude that anesthetics can reversibly inhibit synaptic transmission through their effects on synaptic membrane lateral pressure. We also speculate that membrane lateral pressure may be a highly sensitive means of controlling membrane function through alteration in membrane lipid composition, membrane enzyme activity, receptor affinity and ion channel permeability.