Maternal calorie restriction during gestation in rats has been associated with altered white adipose tissue (WAT) sympathetic innervation and function in offspring. Here, we aimed to investigate whether supplementation with oral leptin (a breast milk component) throughout the lactation period may revert the aforementioned adverse programming effects. Three groups of male and female rats were studied at the postnatal day 25: the offspring of control dams, the offspring of 20% calorie-restricted dams during pregnancy (CR) and CR rats supplemented with physiological doses of leptin throughout lactation (CR-Leptin). Tyrosine hydroxylase (TH) levels and its immunoreactive area, and mRNA expression levels of lipid metabolism-related genes and of deiodinase iodothyronine type II (Dio2) were determined in WAT. Triiodothyronine (T3) levels were determined in the blood. In CR males, leptin treatment restored the decreased TH levels and its immunoreactive area in WAT, and partially normalized expression levels of genes related to lipolysis and fatty acid oxidation (adipose triglyceride lipase, hormone-sensitive lipase, carnitine palmitoyltransferase 1b and peroxisome proliferator-activated receptor gamma coactivator 1-alpha). Leptin treatment also reverted the decreased T3 plasma levels and WAT lipoprotein lipase mRNA levels occurring in CR males and females, and the decreased Dio2 mRNA levels in CR females. Leptin supplementation throughout the lactation period reverts the malprogrammed effects on WAT structure and function induced by undernutrition during pregnancy. These findings support the relevance of the intake of leptin during lactation, bearing clear characteristics of essential nutrient, and provide a strategy to treat and/or prevent the programmed trend to obesity acquired by inadequate fetal nutrition.
Read full abstract