Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits. Consequently, this study endeavored to explore effects of purified Okra seed polysaccharides (OP) (Abelmoschus esculentus (L.) Moench) against HFHCD-induced metabolic alterations and cognitive dysfunction, with elucidating underlying contributed mechanistic pathways. OP hydrolysate was analyzed using GC-MS analysis. The biological study encompassed two phases, the first phase I (model establishment phase), for 3months, involved a control group, fed standard diet, and HFHCD group. The second phase (phase II) where HFHCD fed rats were re-divided into 3 equal subgroups, 1st subgroup received HFHCD, whereas second and third subgroups received OP, 200 or 400mg/kg/day, respectively, for 28days. GC-MS characterized OP as an arabinogalactouranan and revealed the monosaccharide composition as galacturonic acid: arabinose: glucose: galactose: rhamnose: xylose in ratio of 28.2: 23.3: 11.5: 4.2: 3.5: 2.0. The findings demonstrated that OP dose-dependently mitigated HFHCD-induced rise in body weights, lipid profiles, levels of blood glucose and disruption in behavioral outcomes, neurotransmitters, together with histopathological alterations in brain. Moreover, OP dose-dependently improved redox, neuroinflammatory, endoplasmic reticulum (ER) stress, autophagic and apoptotic biomarkers. OP can be regarded as promising functional food candidate to hamper HFHCD-induced metabolic alterations and cognitive deficit, via enhancing Nrf2/HO-1, AMPK/SIRT1 and PI3K/AKT/CREB axes, long with dampening of HMGB1/RAGE/TLR4, NLRP3/Caspase-1, JAK-2/STAT-3 and PERK/CHOP axes.
Read full abstract