AbstractAbstract 1905Multiple myeloma (MM) is a fatal plasma cell malignancy mainly localized in the bone marrow. The clonal expansion of tumor cells is associated with the disappearance of normal plasma cells and with a marked depression in the production of normal immunoglobulin (Ig). This makes MM patients highly vulnerable to bacterial, fungal and viral infections and recurrent infections remain to be a major cause of death in MM patients. It has been shown that most primary myeloma cells and cell lines express multiple Toll-like receptors (TLRs). Among them, TLR4 is most frequently expressed. To investigate TLR-initiated responses in MM cells including proliferation, anti-apoptosis and immune escape, we first screened four commonly used human myeloma cell line (HMCL) for the expression of major TLRs by RT-PCR. Surprisingly, all the HMCL expressed multiple TLRs. We also examined primary myeloma cells from 4 patients with MM and our results showed that TLR4 was expressed by all the tumor cells. We incubated myeloma cells with LPS, the natural ligand for TLR4, and found that cell proliferation increased significantly. Targeting TLRs on malignant B cells can induce resistance to chemotherapeutic agents but can also be exploited for combined therapeutic approaches. As mechanisms involved in the resistance to apoptosis play a major role in MM escape to therapies, we sought to determine the capacity of TLR4 ligand to promote the survival of HMCL cells. Myeloma cells were pretreated for four hours with LPS before being induced apoptosis by adriamycin. Results showed that LPS pretreatment partially protected the cells from adriamycin-induced apoptosis. The TLR signaling pathway activates several signaling elements, including NF-kB and ERK/JNK/p38 MAPKs, which regulate many immunologically relevant proteins. Time-dependent MAPK phosphorylation was measured to assess the activation of these kinases upon treatment with LPS in cell lines. ERK1/2, p38, and JNK phosphorylation and NF-kB were significantly up-regulated following LPS treatment. Moreover, our findings demonstrated that LPS-induced cell proliferation was dependent on JNK, ERK and p38 signaling. IL-18, a recently described member of the IL-1 cytokine superfamily, is now recognized as an important regulator of innate and acquired immune responses. In this study, we found that LPS induced IL-18 secretion and activated MAPK and NF-kB signaling simultaneously. Therefore, our results suggest that activation of the MAPK signaling and secretion of IL-18 are interconnected. Tumors evade immune surveillance by multiple mechanisms, including the production of factors such as TGF-β and VEGF, which inhibit and impair tumor-specific T cell immunity. Our study also showed that T cell proliferation induced by allostimulatory cells decreased when the HMCL were pre-treated with LPS. Moreover, immunoregulatory molecules on HMCL, such as B7-H1, B7-H2 and CD40, were upregulated after treatment with LPS, suggesting that TLR4 ligand LPS facilitates tumor cell evasion of the immune system. Our results show that TLRs are functional on myeloma tumor cells, and the ligands to these TLRs have a functional role in affecting myeloma cell proliferation, survival, and response to chemotherapy and immune attacks. Disclosures:No relevant conflicts of interest to declare.