BackgroundThe knowledge of vine vegetative status within a vineyard plays a key role in canopy management in order to achieve a correct vine balance and reach the final desired yield/quality. Detailed information about canopy architecture and missing plants distribution provides useful support for farmers/winegrowers to optimize canopy management practices and the replanting process, respectively. In the last decade, there has been a progressive diffusion of UAV (Unmanned Aerial Vehicles) technologies for Precision Viticulture purposes, as fast and accurate methodologies for spatial variability of geometric plant parameters. The aim of this study was to implement an unsupervised and integrated procedure of biomass estimation and missing plants detection, using both the 2.5D-surface and 3D-alphashape methods.ResultsBoth methods showed good overall accuracy respect to ground truth biomass measurements with high values of R2 (0.71 and 0.80 for 2.5D and 3D, respectively). The 2.5D method led to an overestimation since it is derived by considering the vine as rectangular cuboid form. On the contrary, the 3D method provided more accurate results as a consequence of the alphashape algorithm, which is capable to detect each single shoot and holes within the canopy. Regarding the missing plants detection, the 3D approach confirmed better performance in cases of hidden conditions by shoots of adjacent plants or sparse canopy with some empty spaces along the row, where the 2.5D method based on the length of section of the row with lower thickness than the threshold used (0.10 m), tended to return false negatives and false positives, respectively.ConclusionsThis paper describes a rapid and objective tool for the farmer to promptly identify canopy management strategies and drive replanting decisions. The 3D approach provided results closer to real canopy volume and higher performance in missing plant detection. However, the dense cloud based analysis required more processing time. In a future perspective, given the continuous technological evolution in terms of computing performance, the overcoming of the current limit represented by the pre- and post-processing phases of the large image dataset should mainstream this methodology.
Read full abstract