In this paper, the alpha decay process is investigated through the theoretical approaches for spherical Bismuth (Bi) isotopes in the range 187 [Formula: see text] A [Formula: see text] 214. The results are compared with the experimental data for isotopes of Bi with the modified Coulomb and proximity potential model (MCPPM). We analyze the systematics of alpha decay half-life (HL) of Bi isotopes versus the decay energy and the total [Formula: see text]-kinetic energy. The results and their systematics are compared with the available experimental data and with those data obtained from empirical models as the Viola-Seaborg (VS) formula, Royer (R) and the two versions of modified Brown (mB) empirical formulas. The computed half-lives (HLs) are compared with the experimental data and also with the existing empirical estimates and are found in good agreement.