Primates display varying degrees of behavioral flexibility that allow them to adjust their diet to temporal changes in food availability. This trait might be critical for the survival of folivorous-frugivorous species inhabiting small forest fragments, where the availability of food resources tends to be lower than in large fragments and continuous forests. However, the scarcity of studies addressing this issue hampers our understanding of the adaptive behaviors that favor the survival of these primates in low-quality habitats. We conducted a 36-mo study testing the hypothesis that brown howler monkeys (Alouatta guariba clamitans) are able to adjust their diet in response to local and seasonal changes in resource availability. We compared the diet of six free-ranging groups inhabiting three small (<10 ha) and three large (>90 ha) Atlantic forest fragments in southern Brazil and estimated the temporal availability of their top food species (i.e., those species that together contribute ≥80% of total feeding records). We found that brown howlers exploited similarly rich diets in small (45, 54, and 57 plant species) and large (48, 51, and 56 species) fragments. However, intermonth diet similarity was higher for groups in small fragments, where howlers also fed on plant items from nine alien species. Fruits and leaves were the most consumed plant items in both small (42% and 49% of feeding records, respectively) and large (51% and 41%, respectively) fragments. The consumption of young leaves was higher in small than in large fragments, whereas the consumption of other plant items did not show a pattern related to fragment size. Regarding the contribution of growth forms as food sources, only the exploitation of palms showed a pattern related to fragment size. Palms contributed more to the diet of groups inhabiting large fragments. The availability of seasonal food items–ripe fruits and young leaves–influenced their consumption in both habitat types. Therefore, brown howlers cope with local and seasonal fluctuations in food availability by opportunistically exploiting resources. We believe that this feeding flexibility is a key component of the phenotypic plasticity that enables howlers to thrive in disturbed habitat patches, where periods of scarcity of preferred foods shall be more common.