Lignin is an abundant biobased feedstock, representing the first source of renewable aromatic structures. Thanks to its high functionality in aliphatic hydroxyls (Al-OH), phenolic hydroxyls (Ph-OH) and carboxylic acids (COOH), lignin is an attractive precursor to crosslinked polymer materials. Different biobased macromolecular architectures can be designed from lignins, whose end-of-life should also be considered in the context of a circular bioeconomy. To enhance the recyclability of crosslinked polymer networks, the introduction of dynamic linkages to design vitrimers is a promising strategy. In this study, Kraft lignin was chemically modified with succinic anhydride, to prepare a series of modified lignins with a controlled COOH/Ph-OH ratio, exploiting the difference in reactivity between Al-OH and Ph-OH groups. Upon crosslinking with a diepoxy, mixed vitrimer networks with variable ratios between dynamic ester bonds and non-dynamic ether bonds were synthesized. The analysis of their properties evidenced the impact of the non-dynamic linkages on the materials behaviors, including their dynamicity and reprocessing ability. Although the activation energy for bond exchange is increased, non-dynamic linkages do not hinder the reprocessability of these adaptable materials, and provide them high creep resistance. The controlled introduction of non-dynamic linkages appears as a promising strategy to enhance the properties of lignin-based vitrimers.
Read full abstract