With its unique corrosion resistance, light weight, mechanical strength, and biocompatibility, TNZ is a versatile metal alloy that is used in the aerospace and medical industries. The current study aims to investigate the effect of milling time (2, 12, 24, and 36 h) on the nanostructured ternary alloy Ti-25Nb-25Zr (TNZ) prepared by high energy ball milling, a process involving the use of a high-energy ball mill to mix and grind the alloy powders, on its structural, physical, and photocatalytic characterizations. The alloys' characteristics, such as morphology, structural properties, relative density/porosity, surface roughness, hardness, and Young's modulus, were evaluated using SEM, XRD, surface profilometer, and microdurometer, respectively. The photocatalytic characterization was conducted by measuring their absorbance as a function of time using a spectrophotometer of visible and ultraviolet light in the wavelength range of 250–650 nm. Results showed that the crystallite and mean pore size reduced with increasing milling time, with the smallest values of 25 nm and 34 μm, respectively, after 36 h. This indicates that longer milling times result in a more compact and uniform structure, which could enhance the mechanical properties of the alloy. Structural characterization shows that the amount of the β-Ti phase increased with increasing milling time, resulting in the spherical morphology and texturing of the synthesized alloys. The milled alloys' structural evolution and morphological changes were sensitive to their milling times. Also, the relative density, Young's modulus, and hardness increased, reaching values of 89 %, 105 GPa, and 352 HV, respectively, due to grain size decreasing with increasing milling time. This suggests that longer milling times lead to a denser and harder alloy, which could be beneficial for its use in total hip prostheses. The photocatalytical characterization demonstrated that the degradation of orange II (OII) increased with increasing milling time. The Ti-25Nb-25Zr catalyst gave the best degree of degradation, which meant that the decolorization process could be operated rapidly and at a relatively low cost without UV irradiation.
Read full abstract