BACKGROUND: Oxidative stress may be one of the mechanisms for the development of complications in DM and many forms of CKD. However, the influence of this factor on the metabolism of sialoglycoconjugates, which actively participates in the regulatory processes of the body, is unknown.AIM: comparative study of the effect of lipoic acid on the parameters of liver sialoglycoconjugate metabolism in rats with alloxan diabetes mellitus.MATERIALS AND METHODS: Studies were conducted on white male rats weighing 180–220 grams. The animals were divided into three groups: in the animals of the first and second groups, alloxan diabetes mellitus (DM) was caused by a single subcutaneous injection of alloxan tetrahydrate (AT). Animals of the second group received lipoic acid intramuscularly; the third group consisted of intact rats. On 5, 10, 20, 30 and 40 days after the injection of AT, a comprehensive examination of the animal’s condition was performed: 1) determination of the level of glycemia; 2) assessment of the degree of development of oxidative stress by the content of TBK-active products in the liver; 3) study of the dynamics of the exchange of sialoglycoconjugates in the liver (free, oligo-and protein-bound sialic acids, sialidase activity).RESULTS: The study was conducted on 106 rats, each experimental group had 48 animals, control — 10. It was found that the administration of α-lipoic acid to rats with alloxan diabetes leads to a decrease in the level of glycemia. The introduction of lipoic acid in experimental animals did not reduce the sialidase activity and the content of all sialic acid fractions in the liver, although it reduced the degree of oxidative stress in the body.CONCLUSION: Supplementation of lipoic acid in experimental animals did not significantly decrease sialidase activity and content of the sialic acid fractions under study in the liver, although it did reduce the degree of oxidative stress development in the organism. The increased rate of sialic acid metabolism in the liver of alloxan-diabetic rats may indicate a restructuring of hepatocyte metabolism to adapt the whole organism to prolonged hyperglycemia under insulin deficiency conditions.
Read full abstract