The aim of the study was to compare conventional sintering with additive manufacturing techniques for β-TCP bioceramics, focusing on mechanical properties and biocompatibility. A "critical" bone defect requires surgical intervention beyond simple stabilization. Autologous bone grafting is the gold standard treatment for such defects, but it has its limitations. Alloplastic bone grafting with synthetic materials is becoming increasingly popular. The use of bone graft substitutes has increased significantly, and current research has focused on optimizing these substitutes, whereas this study compares two existing manufacturing techniques and the resulting β-TCP implants. The 3D printed β-TCP hybrid structure implant was fabricated from two components, a column structure and a freeze foam, which were sintered together. The conventionally fabricated ceramics were fabricated by casting. Both scaffolds were characterized for porosity, mechanical properties, and biocompatibility. The hybrid structure had an overall porosity of 74.4 ± 0.5%. The microporous β-TCP implants had a porosity of 43.5 ± 2.4%, while the macroporous β-TCP implants had a porosity of 61.81%. Mechanical testing revealed that the hybrid structure had a compressive strength of 10.4 ± 6 MPa, which was significantly lower than the microporous β-TCP implants with 32.9 ± 8.7 MPa. Biocompatibility evaluations showed a steady increase in cell proliferation over time for all the β-TCP implants, with minimal cytotoxicity. This study provides a valuable insight into the potential of additive manufacturing for β-TCP bioceramics in the treatment of bone defects.