ObjectiveTo date there have been no studies exploring the potential for neuroinflammation as an intracranial bio-effect associated with diagnostic ultrasound during neonatal cranial scans in a mammalian in vivo model. The study described here was aimed at investigating the effects of B-mode and Doppler mode ultrasound on inflammation in the rat brain. MethodsTwelve Wistar rats (7–9 wk old) were divided into a control group and an ultrasound-exposed group (n = 6/group). A craniotomy was performed, followed by 10 min of B-mode and spectral Doppler interrogation of the middle cerebral artery. The control group was subjected to sham treatment, with the transducer held stationary over the craniotomy site, but the ultrasound machine switched off. Animals were euthanized 48 h after exposure, and the brains formalin fixed for immunohistochemical analysis using allograft inflammatory factor 1 (IBA-1) and glial fibrillary acidic protein (GFAP) as markers of microglia and astrocytes, respectively. The numbers of IBA-1- and GFAP-immunoreactive cells were manually counted and expressed as areal density (cells/mm2). Results were analyzed using Student's unpaired t-test and one-way repeated-measures analysis of variance. ResultsThe ultrasound-exposed brain exhibited significant increases in IBA-1 and GFAP immunoreactive cell density in all regions of B-mode and Doppler mode exposure compared with the control group (p < 0.001). ConclusionTen minutes of B-mode and Doppler mode ultrasound may induce neuroinflammatory changes in the rat brain. This suggests that exposure of brain tissue to current diagnostic ultrasound intensities may not be completely without risk.
Read full abstract