Abstract

Allograft inflammatory factor-1 (AIF-1) is expressed in microglia. Unilateral common carotid artery occlusion (UCCAO) was conducted to elucidate mechanisms that regulate AIF-1 expression in C57BL/6 male mice. Immunohistochemical reactivity of microglia against anti-AIF-1 antibody was increased significantly in the brain of this model. The increased AIF-1 production was further confirmed by ELISA using brain homogenate. Real-time PCR demonstrated that the increased AIF-1 production was regulated at the transcriptional level. Serum AIF-1 levels were further examined by ELISA and marked increase was observed on Day 1 of UCCAO. To examine the influence of AIF-1, immunohistochemical staining was performed and revealed that the immunoreactivity against anti-Iba-1 antibody was significantly increased in various organs. Among them, the accumulation of Iba-1+ cells were observed prominently in the spleen. Intraperitoneal injection of minocycline, a potent microglia inhibitor, reduced the number of Iba-1+ cells suggesting microglia activation-dependent accumulation. Based on these results, AIF-1 expression was further examined in the murine microglia cell line MG6. AIF-1 mRNA expression and secretion were up-regulated when the cells were cultured under hypoxic condition. Importantly, stimulation of the cells with recombinant AIF-1 induced the expression of AIF-1 mRNA. These results may suggest that increased AIF-1 production by microglia in cerebral ischemia regulate the AIF-1 mRNA expression at least in part by an autocrine manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.