IntroductionCytochrome P450 (CYP) 2J2 is a major enzyme that controls epoxyeicosatrienoic acids biosynthesis, which may play a role in chronic obstructive pulmonary disease (COPD) development. In this study, we aimed to assess the influence of CYP2J2 polymorphisms with COPD susceptibility. Material and methodsA case–control study enrolled 313 COPD cases and 508 controls was to investigate the association between CYP2J2 polymorphisms and COPD risk. Agena MassARRAY platform was used to genotype CYP2J2 polymorphisms. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to evaluate the association between CYP2J2 polymorphisms and COPD risk. ResultsWe observed rs11207535 (homozygote: OR=0.08, 95%CI=0.01–0.96, p=0.047; recessive: OR=0.08, 95%CI=0.01–0.94, p=0.044), rs10889159 (homozygote: OR=0.08, 95%CI=0.01–0.92, p=0.043; recessive: OR=0.08, 95%CI=0.01–0.90, p=0.040) and rs1155002 (heterozygote: OR=1.63, 95%CI=1.13–2.36, p=0.009; dominant: OR=1.64, 95%CI=1.15–2.35, p=0.006; additive: OR=1.45, 95%CI=1.09–1.92, p=0.011) were significantly associated with COPD risk. Allelic tests showed T allele of rs2280274 was related to a decreased risk of COPD and T allele of rs1155002 was associated with an increased COPD risk. Stratified analyses indicated the effects of CYP2J2 polymorphisms and COPD risk were dependent on gender and smoking status (p<0.05). Additionally, two haplotypes (Ars11207535Crs10889159Trs1155002 and Ars11207535Crs10889159Crs1155002) significantly decreased COPD risk. ConclusionIt suggested CYP2J2 polymorphisms were associated with COPD susceptibility in the Chinese Han population.