We report the experimental results of hybrid four-wave mixing and fluorescence signals from nitrogen-vacancy (NV) centers in diamond. The fluorescence signals are slowed owing to dark state. The observed delay time of light slowing due to interconversion between NV− and NV0 is about 6.4 μs. The relative intensities of read-out signals change with the wavelength and power of writing pulse. Based on light slowing, we present the model of all-optical time division multiplexing. The intensity ratio in different demultiplexed channels is modulated by the wavelength and power of control field. It has potential applications in quantum communication and all-optical network.