Over the last few decades, nonlinear optics has become significantly more nonlinear, traversing nearly a billionfold improvement in energy efficiency, with ultrafast nonlinear nanophotonics in particular emerging as a frontier for combining both spatial and temporal engineering. At present, cutting-edge experiments in nonlinear nanophotonics place us just above the mesoscopic regime, where a few hundred photons suffice to trigger highly nonlinear dynamics. In contrast to classical or deep-quantum optics, the mesoscale is characterized by dynamical interactions between mean-field, Gaussian, and non-Gaussian quantum features, all within a close hierarchy of scales. When combined with the inherent multimode complexity of optical fields, such hybrid quantum-classical dynamics present theoretical, experimental, and engineering challenges to the contemporary framework of quantum optics. In this review, we highlight the unique physics that emerges in multimode nonlinear optics at the mesoscale and outline key principles for exploiting both classical and quantum features to engineer novel functionalities. We briefly survey the experimental landscape and draw attention to outstanding technical challenges in materials, dispersion engineering, and device design for accessing mesoscopic operation. Finally, we speculate on how these capabilities might usher in some new paradigms in quantum photonics, from quantum-augmented information processing to nonclassical-light-driven dynamics and phenomena to all-optical non-Gaussian measurement and sensing. The physics unlocked at the mesoscale present significant challenges and opportunities in theory and experiment alike, and this review is intended to serve as a guide to navigating this new frontier in ultrafast quantum nonlinear optics.