Abstract

An all-optical measurement of high-order fractional molecular echoes is demonstrated by using high-order harmonic generation (HHG). Excited by a pair of time-delayed short laser pulses, the signatures of full and high order fractional (1/2 and 1/3) alignment echoes are observed in the HHG signals measured from CO 2 molecules at various time delays of the probe pulse. By increasing the time delay of the pump pulses, much higher order fractional (1/4) alignment echo is also observed in N 2O molecules. With an analytic model based on the impulsive approximation, the spatiotemporal dynamics of the echo process are retrieved from the experiment. Compared to the typical molecular alignment revivals, high-order fractional molecular echoes are demonstrated to dephase more rapidly, which will open a new route towards the ultrashort-time measurement. The proposed HHG method paves an efficient way for accessing the high-order fractional echoes in molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.