ObjectiveTo investigate the in vitro effects of CCN2 on odontoblast-like cells proliferation and differentiation. DesignMDPC-23 cells were cultured in DMEM supplemented with 5% FBS. CCN2 was either added to culture media or coated onto culture polystyrene, addition or coating of dH2O was served as control. In the addition group, CCN2 (100 ng/mL) was added into culture media. In the coating group, CCN2 at the concentration of 1000 ng/mL was employed. Cell proliferation was performed using CCK-8 assay. Cell differentiation and mineralization were analyzed by ALPase activity assay, real time RT-PCR and alizarin red staining. One-way ANOVA with post-hoc tukey HSD test was used for statistical analysis. ResultsMDPC-23 cells exhibited robust proliferative activity upon exposure to either soluble or immobilized CCN2. ALP activity of cells cultured on CCN2-modified surface was continuously strengthened from day six (0.831 ± 0.024 units/μg protein versus 0.563 ± 0.006 units/μg protein of control) till day eight (1.035 ± 0.139 units/μg protein versus 0.704 ± 0.061 units/μg protein of control). Gene expression of BSP, OCN and OPN were promoted by soluble CCN2 after 48 h exposure. Moreover, gene expression of BSP, OCN, OPN, ALP, COL1 A1, Runx-2, DSPP and DMP-1 was significantly enhanced by immobilized CCN2. Finally, mineralization of MDPC-23 cells was accelerated by both soluble and immobilized CCN2 to different extent. ConclusionsThe findings indicate that CCN2 promoted proliferation, odontogenic gene expression and mineralization of MDPC-23 cells. It is proposed that CCN2 may be a promising adjunctive formula for dentin regeneration.