Oxygen isotopes have been equilibrated between muscovite and aqueous alkali chloride solution and between paragonite and alkali chloride solution in the temperature range of 400°–650°C at 1 and 1.5 kb fluid pressure. Isotopic equilibrium was inferred from the fact that compatible fractionation factors were obtained using 3 different chemical reactions to produce the mica: (1) muscovite or paragonite was prepared by reacting natural kaolinite with 2–3 molal KCl or NaCl solutions; (2) muscovite was crystallized in pure water from a gel; and (3) synthetic paragonite was reacted with 2–3 molal KCl solution, producing muscovite by an alkali ion exchange reaction. The 1 M modification of the mica was made in every experiment. In several cases the extent of oxygen exchange was traced by running companion equilibrations in solutions of unusually low O^(18)/O^(16) ratio. No isotopic fractionation was discernible between muscovite and paragonite in the temperature range studied. Per mille fractionations between muscovite and water are given by the expression 10^3 In α = 2.38(10^6T^(−2)) − 3.89. These data can be combined with the results of other laboratory equilibration studies to establish a set of calibrated oxygen isotope geothermometers. Analogous to the alkali feldspar systems previously reported, the direct relationship between cation and oxygen isotope exchange suggests that some type of solution-redeposition mechanism operated during muscovite-paragonite transformations in aqueous solutions. Also, the extensive oxygen isotope exchange (with the solution) that accompanies the formation of muscovite from kaolinite implies a breakdown of the kaolinite structure. This notion does not concur with hypotheses based on rate studies and X-ray measurements that the unaltered kaolinite structure is partially inherited by the mica.