Aspergillus niger S17-5 produces two alkylitaconic acids, 9-hydroxyhexylitaconic acid (9-HHIA) and 10-hydroxyhexylitaconic acid (10-HHIA), which have cytotoxic and polymer building block properties. In this study, we characterized the production of 9-HHIA and 10-HHIA by addition of their expected precursor, caprylic acid, to a culture of A. niger S17-5, and demonstrated batch fermentation of 9-HHIA and 10-HHIA in a jar fermenter with DO-stat. Production titres of 9-HHIA and 10-HHIA from 3% glucose in a flask after 25days cultivation were 0·35 and 1·01gl-1 respectively. Addition of 0·22gl-1 of caprylic acid to a suspension of resting cells of A. niger S17-5 led to 32% enhancement of total 9-HHIA and 10-HHIA production compared to no addition. No enhancement of the production of 9-HHIA or 10-HHIA by the addition of oxaloacetic acid was observed. Addition of caprylic acid to the culture at mid-growth phase was more suitable for 9-HHIA and 10-HHIA production due to less cell growth inhibition by caprylic acid. DO-stat batch fermentation with 3% glucose and 14·4gl-1 of caprylic acid in a 1·5l jar fermenter resulted in the production titres of 9-HHIA and 10-HHIA being 0·48 and 1·54gl-1 respectively after 10days of cultivation. Addition of caprylic acid to the culture of A. niger S17-5 enhances 9-HHIA and 10-HHIA production. These results suggest that 9-HHIA and 10-HHIA are synthesized with octanoyl-CoA derived from caprylic acid, and that the supply of octanoyl-CoA is a rate-limiting step in 9-HHIA and 10-HHIA production. To the best of our knowledge, this is the first report regarding the fermentation of naturally occurring itaconic acid derivatives in a jar fermenter.
Read full abstract