Abstract

Itaconic acid possessing a vinylidene group, which is mainly produced by fungi, is used as a biobased platform chemical and shows distinctive bioactivities. On the other hand, some fungi and lichens produce itaconic acid derivatives possessing itaconic acid skeleton, and the number of the derivatives is currently more than seventy. Based on the molecular structures, they can be categorized into two groups, alkylitaconic acids and α-methylene-γ-butyrolactones. Interestingly, some itaconic acid derivatives show versatile functions such as antimicrobial, anti-inflammatory, antitumor, and plant growth-regulating activities. The vinylidene group of itaconic acid derivatives likely participates in these functions. It is suggested that α-methylene-γ-butyrolactones are biosynthesized from alkylitaconic acids which are first biosynthesized from acyl-CoA and oxaloacetic acid. Some modifying enzymes such as hydroxylase and dehydratase are likely involved in the further modification after biosynthesis of their precursors. This contributes to the diversity of itaconic acid derivatives. In this review, we summarize their structures, functions, and biosynthetic pathways together with a discussion of a strategy for the industrial use. KEY POINTS: • Itaconic acid derivatives can be categorized into alkylitaconic acids and α-methylene-γ-butyrolactones. • The vinylidene group of itaconic acid derivatives likely participates in their versatile function. • It is suggested that α-methylene-γ-butyrolactones are biosynthesized from alkylitaconic acids which are first synthesized from acyl-CoA and oxaloacetic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call