This study utilizes a combination of machine learning and a global search algorithm to enhance the quality of feature extraction in sports images. A deep residual generative adversarial network is employed to deblur images and sharpen their clarity, while the optimized particle swarm optimization algorithm is utilized to extract image features with precision and identify critical information. According to the experimental results, the research method improves the peak signal-to-noise ratios in ball sports image deblurring by 12.45%, 13.91%, and 17.18%, respectively, and in track and field sports image deblurring by 11.71%, 12.91%, and 21.61%, respectively, when compared with the generative adversarial network, generative adversarial network incorporating the attention mechanism, and multi-scale convolution-based algorithm. The accuracy-recall curve of the particle swarm algorithm that has been optimised for research completely encircles the accuracy-recall curves of the other four algorithms, which verifies the efficacy of the research methodology. The research will offer a more comprehensive perspective on sports image processing.
Read full abstract