In order to enable the non-cooperative rendezvous, capture, and removal of large space debris, automatic recognition of the target is needed. Video-based techniques are the most suitable in the strict context of space missions, where low-energy consumption is fundamental, and sensors should be passive in order to avoid any possible damage to external objects as well as to the chaser satellite.This paper presents a novel fast shape-from-shading (SfS) algorithm and a field-programmable gate array (FPGA)-based system hardware architecture for video-based shape reconstruction of space debris. The FPGA-based architecture, equipped with a pair of cameras, includes a fast image pre-processing module, a core implementing a feature-based stereo-vision approach, and a processor that executes the novel SfS algorithm.Experimental results show the limited amount of logic resources needed to implement the proposed architecture, and the timing improvements with respect to other state-of-the-art SfS methods. The remaining resources available in the FPGA device can be exploited to integrate other vision-based techniques to improve the comprehension of debris model, allowing a fast evaluation of associated kinematics in order to select the most appropriate approach for capture of the target space debris.
Read full abstract