The scope of this article is to study and propose optimized electricity production plants powered by renewable energy sources, in the frame of energy transition in non-interconnected, rural monasteries. Energy transition, namely, the transition from fossil fuels to renewables and rational use of energy, constitutes a major component of sustainability. In particular, monasteries constitute a special and unique category of rural communities, given their size and the scale of the electricity demand. As a case study, this work focuses on the Xenofontos Monastery, in Mount Athos. Mount Athos, practically a mountainous peninsula at the North Aegean Sea (central-south Macedonia, Greece), is an independent and self-governed community of 20 different monasteries, with no electrical interconnection between them. The electrification of these monasteries started in the 1980s, with the installation of autonomous small diesel generators. Since 2010, an attempt has been initiated to replace these generators with power production and storage technologies based on renewable energy sources, aiming to approach a more energy-independent and sustainable pattern in the peninsula. The article examines two alternative systems, with small wind turbines and photovoltaic panels as the power production units and small pumped hydro storage or electrochemical batteries as storage technologies. New operation algorithms were developed and the sizing of the systems was accomplished through the computational simulation of the examined plants’ annual operations, aiming at full coverage of the power demand. The article proves that 100% power demand coverage from hydro power plants is possible with the support of pumped storage, achieving a Levelized Cost Of Electricity in the range of 0.22 EUR/kWh. This feature can be reduced at 0.11 EUR/kWh with the support of lithium-ion batteries, yet with annual power demand coverage at 90%.