We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a “virtual” fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier–Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The proposed diffuse interface immersed boundary method is shown to be discretely mass-preserving while being temporally second-order accurate and exhibits nominal second-order accuracy in space. We examine the efficacy of the proposed approach through extensive numerical experiments involving one or more fluids and solids, that include two-particle sedimentation in homogeneous and stratified environment. The results from the numerical simulations show that the proposed methodology results in reduced spurious force oscillations in case of moving bodies while accurately resolving complex flow phenomena in multiphase flows with moving solids. These studies demonstrate that the proposed diffuse interface immersed boundary method, which could be related to a class of penalisation approaches, is a robust and promising alternative to computationally expensive conformal moving mesh algorithms as well as the class of sharp interface immersed boundary methods for multibody problems in multi-phase flows.