This study addresses the persistent issue of urban waterlogging in Wujin District, Changzhou City, Jiangsu Province, using a comprehensive approach integrating an optimized drainage network and low-impact development (LID) measures. Utilizing the Storm Water Management Model (SWMM), calibrated with extensive hydrological and hydraulic data, the model was refined through genetic algorithm-based optimization to enhance drainage efficiency. Key results indicate a substantial reduction in the average duration of waterlogging from 7.43 h to 3.12 h and a decrease in average floodwater depth from 21.27 cm to 8.65 cm. Improvements in the drainage network layout, such as the construction of new stormwater mains, branch drains, and rainwater storage facilities, combined with LID interventions like permeable pavements and rain gardens, have led to a 56.82% increase in drainage efficiency and a 63.88% reduction in system failure rates. The implementation effectively minimized peak flood flow by 25.38%, reduced runoff, and improved groundwater recharge and rainwater utilization. The proposed solutions offer a replicable, sustainable framework for mitigating flooding in urban environments, enhancing ecological resilience, and ensuring the safety and quality of urban life in densely populated areas.
Read full abstract