This paper presents a new scaffold made from graphene oxide nanosheets, calix[4]arene supramolecules, silk fibroin proteins, cobalt ferrite nanoparticles, and alginate hydrogel (GO-CX[4]/SF/CoFe2O4/Alg). After preparing the composite, we conducted various analyses to examine its structure. These analyses included FTIR, XRD, SEM, EDS, VSM, DLS, and zeta potential tests. Additionally, we performed tests to evaluate the swelling ratio, rheological properties, and compressive mechanical strength of the material. The biological capability of the composite was tested through biocompatiblity, anticancer, hemolysis, antibacterial anti-biofilm assays. Besides, the rheological properties and swelling behaviour of the composite were studied. The results showed that the scaffold is biocompatible with Hu02 cells and the cell viability percentages of 85.23 %, 82.78 %, and 80.18 % for were acquired for 24, 48, and 72 h, respectively. In contrast, the cell viability percentage of BT549 cancer cells were obtained 65.79 %, 60.45 % and 58.16 % for same period which confirmed notable anticancer activity of the product composite. Moreover, a significant antibacterial growth inhibition against E. coli and S. aureus species highlights its potential as an effective antibacterial agent. Furthermore, the observed minimal hemolytic effect (6.56 %) and strong inhibition of P. aeruginosa biofilm formation with a low OD value (0.24) indicate notable hemocompatibility and antibacterial activity.
Read full abstract