The concepts of BSE property and BSE algebras were introduced and studied by Takahasi and Hatori in 1990 and later by Kaniuth and Ulger. This abbreviation refers to a famous theorem proved by Bochner and Schoenberg for \(L^1({\mathbb {R}})\), where \({\mathbb {R}}\) is the additive group of real numbers, and by Eberlein for \(L^1(G)\) of a locally compact abelian group G. In this paper we investigate this property for the Banach algebra \(L^p(S,\mu )\;(1\le p<\infty )\) where S is a compact totally ordered semigroup with multiplication \(xy=\max \{x,y\}\) and \(\mu \) is a regular bounded continuous measure on S. As an application, we have shown that \(L^1(S,\mu )\) is not an ideal in its second dual.