Abstract In this paper, we express a generalization of the Ramanujan integral I ( α ) {I(\alpha)} with the analytical solutions, using the Laplace transform technique and some algebraic relation or the Pochhammer symbol. Moreover, we evaluate some consequences of a generalized definite integral ϕ * ( υ , β , a ) {\phi^{*}(\upsilon,\beta,a)} . The well-known special cases appeared, whose solutions are possible by Cauchy’s residue theorem, and many known applications of the integral I ( a , β , υ ) {I(a,\beta,\upsilon)} are discussed by the Leibniz rule for differentiation under the sign of integration. Further, one closed-form evaluation of the infinite series of the F 0 1 ( ⋅ ) {{}_{1}F_{0}(\,\cdot\,)} function is deduced. In addition, we establish some integral expressions in terms of the Euler numbers, which are not available in the tables of the book of Gradshteyn and Ryzhik.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access