Improper waste disposal or inadequate wastewater treatment can result in pharmaceuticals reaching water bodies, posing environmental hazards. In this study, crude extracts containing the laccase enzyme from Pleurotus florida, Pleurotus eryngii, and Pleurotus sajor caju were used to degrade the fluoroquinolone antibiotics (FQs) levofloxacin (LEV), norfloxacin (NOR), ciprofloxacin (CIP), ofloxacin (OFL), and enrofloxacin (ENR) in aqueous solutions. The results for the fungi derived laccase extracts were compared with those obtained using commercially sourced laccase. Proteomics analysis of the crude extracts confirmed the presence of laccase enzyme across all three tested species, with proteins matching those found in Trametes versicolor and Pleurotus ostreatus. In vivo studies were conducted using species pure lines of fungal whole cells. The highest degradation efficiency observed was 77.7% for LEV in the presence of P. sajor caju after 25 days of treatment. Degradation efficiencies ranged from approximately 60-72% for P. florida, 45–76% for P. eryngii, and 47–78% for P. sajor caju. A series of in vitro experiments were also conducted using crude extracts from the three species and outcomes compared with those obtained when commercial laccase was used confirmed laccase as the enzyme responsible for antibiotic removal. The degradation efficiencies in vitro surpassed those measured in vivo, ranging from approximately 91-98% for commercial laccase, 77–92% for P. florida, 76–92% for P. eryngii, and 78–88% for P. sajor caju. Liquid chromatography–high-resolution mass spectrometry (LC-MS/MS) identified the degradation products, indicating a consistent enzymatic degradation pathway targeting the piperazine moiety common to all tested FQs, irrespective of the initial antibiotic structure. Phytoplankton toxicity studies with Dunaliella tertiolecta were performed to aid in understanding the impact of emerging contaminants on ecosystems, and by-products were analysed for ecotoxicity to assess treatment efficacy. Laccase-mediated enzymatic oxidation shows promising results in reducing algal toxicity, notably with Pleurotus eryngii extract achieving a 97.7% decrease for CIP and a 90% decrease for LEV. These findings suggest the potential of these naturally sourced extracts in mitigating antibiotic contamination in aquatic ecosystems.
Read full abstract