Abstract

Water blooms frequently appear in the aquatic environment with global warming. However, traditional methods for treating water bloom usually require the addition of algaecides, which may lead to secondary environmental pollution problems in the water environment. To solve this problem, researchers have initiated efforts to harness pre-existing chemical substances within aquatic environments to regulate algal blooms, thereby pioneering novel avenues for water body management. Therefore, an integrated approach involving molecular docking, molecular dynamics simulations, three-dimensional quantitative structure-activity relationship (3D-QSAR), and toxicokinetics methods were utilized for the molecular modification of fluoroquinolone antibiotics, to design and screen fluoroquinolone substitutes with improved toxicity of cyanobacteria and green algae, functionality, and environmental friendliness. A total of 143 fluoroquinolone alternatives were designed in this study, and lomefloxacin-6 (LOM6) was found as the optimum alternative to lomefloxacin (LOM), with increased toxicity to cyanobacteria and green algae by 31 % and 72 %. Molecular docking of LOM before and after modification with seven other cyanobacterial and green algal photosynthetic proteins revealed that LOM6 exhibited varying degrees of increased toxicity towards 6 of these photosynthetic proteins, of which 2J96 protein increased the most (136.25 %). It shows that the residual LOM6 in the water environment has a certain inhibitory effect on the algae bloom. In addition, results showed that LOM6 had synergistic toxic effects on cyanobacteria and green algae with other pollutants residual in the aqueous environment, such as trichloroethyl phosphate, triethyl phosphate, perfluorononanoic acid, perfluorooctanoic acid. This indicates that LOM6 has better algal removal effectiveness in aqueous environments where organophosphate flame retardants and perfluorinated compounds exist together. In this paper, a novel method was developed to remove cyanobacteria and green algae in water environment and reduce the secondary pollution through theoretical simulation, which provides theoretical support for the control of water blooms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.