The coastal environment is an important ecosystem connecting land and sea, and arsenite (As(III)) in coastal seawater can seriously affect human health through the food chain. However, the effects of dissolved organic matter (DOM) extracted from coastal algae and rivers on As(III) photooxidation remain unclear. Results show that coastal algal DOM (CA-DOM) is significantly more effective than Suwannee River natural organic matter (SRNOM) in photooxidation of As(III), with a rate 8.3 times higher after correcting for light screening effects. CA-DOM accelerates As(III) photooxidation mainly through the 3DOM⁎ pathway, contributing 78.7 % to the process, whereas 3NOM⁎ contributes only 37.2 % for SRNOM. CA-DOM consists primarily of low-excited tyrosine and tryptophan-like protein substances, whereas SRNOM consists of humic and fulvic acid-like substances. Thus, CA-DOM exhibits a higher steady-state concentration of 3DOM⁎, and the 3DOM⁎ reacts much faster with As(III) than the 3NOM⁎. The increase in CA-DOM concentration can significantly accelerate the photooxidation of As(III), whereas the effect of SRNOM concentration is negligible. Increased salinity can accelerate As(III) photooxidation for all types of DOM. Our results provide new insights into the role of DOM from different sources in the photooxidation of As(III) in the natural environment or engineering applications.
Read full abstract