Abstract

Irradiation can significantly impact the structure, reactivity and environmental behavior of dissolved organic matter (DOM). The extent of these processes remains to be ascertained in more detail but the heterogeneity and site-specificity of DOM, and the lack of methods to characterize DOM at its environmentally-relevant concentrations make it a challenge. In this study, the differences of DOM response to photodegradation in four typical origins (i.e., surface water, sediment and intracellular and extracellular algal DOM) were tracked on the molecular-level using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). Changes of the carboxyl and phenolic DOM moieties induced by irradiation were quantified by spectroscopic titrations, and the mechanism of functional groups affecting the changes of specific molecular composition was qualitatively proposed. The results demonstrated that intracellular algal organic matter (I-DOM) was most susceptible to photodegradation (ca. 63% DOM loss), then came extracellular algal organic matter (E-DOM) and surface water DOM (W-DOM) (ca. 15% DOM loss). Sediment DOM (S-DOM) was most resistant to irradiation, with a very small level of its mineralization. Lipids, lignin-like compounds and tannin-like compounds in I-DOM and E-DOM were relatively photo-labile. The photodegradation of lipids was related to the decarboxylation of carboxyl functional groups, while the photodegradation of tannin-like compounds was related to the rupture of phenolic functional groups. In comparison, the molecular composition of W-DOM and S-DOM was less affected by irradiation, which was also reflected in the fact that the carboxyl and phenolic functional groups were highly photo-resistant. This study showed that the photoactivity of DOM in surface water was closely related to the abundance of algae, so controlling the excessive reproduction of algae may have a positive effect on stability of quality and quantity of organic matter in surface water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call