To improve the prediction accuracies of algae contents in different water bodies, this paper proposes a chlorophyll-A prediction model method based on transfer learning(TL) and mean impact value(MIV) algorithm. Firstly, we preprocess the data collected from the Huai River, including remove the missing data and standardize the preserving data. Then, the MIV algorithm is used to reduce the dimensionality of the data and determine the input variables of the model. Based on the selected input variables, the TL algorithm is introduced to establish the chlorophyll-A prediction model. The developed method can effectively enhance the prediction accuracy, especially when the number of samples is small. The simulation results verify the effectiveness and feasibility of the proposed prediction model.