Filtration was studied in two Arctic clams, Hiatella arctica and Mya sp., collected in Young Sound, Northeast Greenland. Clearance rates were determined as a function of ambient temperature and algal cell concentration, using the clearance method and feeding with a unicellular flagellate. For both species, clearance rates increased with increasing temperature from <−1 up to 4–8°C. At higher temperatures, filtration ceased and the clams closed their valves. Clearance rates were also determined in temperate specimens of H. arctica collected on the west coast of Sweden. For these specimens, clearance rates increased with increasing temperature from 0 to 18–20°C. When weight-specific clearance rates were compared between the two populations and between species, there were no differences at 1°C. Clearance rates in Arctic H. arctica were maximal at algal cell concentrations corresponding to 2.5–8 µg chlorophyll a l-1. Temperature compensation in Arctic bivalves is discussed and it is concluded that adaptations to constant low temperatures consist of a lower minimum temperature, for active filtration. Low clearance rates due to low temperatures did not seem to limit growth, under the prevailing conditions in Young Sound.
Read full abstract