PurposeAlcohol-related blackouts (ARBs) are common in adolescents and emerging adults. ARBs may also be indicative of persistent, alcohol-related neurocognitive changes. This study explored ARBs as a predictor of altered structural brain development and associated cognitive correlates. MethodsLongitudinal growth curve modeling estimated trajectories of brain volume across 6 years in participants from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study (n = 800, 213 with lifetime ARB history). While controlling for demographics and overall alcohol use, ARB history was analyzed as a predictor of brain volume growth in regions associated with alcohol-related cognitive change. Post hoc analyses examined whether ARBs moderated relationships between brain morphology and cognition. ResultsARBs significantly predicted attenuated development of fusiform gyrus and hippocampal volume at unique timepoints compared to overall alcohol use. Alcohol use without ARBs significantly predicted attenuated fusiform and hippocampal growth at earlier and later timepoints, respectively. Despite altered development in regions associated with memory, ARBs did not significantly moderate relationships between brain volume and cognitive performance. ConclusionARBs and overall alcohol use predicted altered brain development in the fusiform gyrus and hippocampus at different timepoints, suggesting ARBs represent a unique marker of neurocognitive risk in younger drinkers.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access