Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems. However, the development of highly-active bifunctional electrocatalysts remains a challenge. Herein, 3D hierarchical nickel-copper alloying arrays with dendritic morphology are manufactured by a simple electrodeposition process, standing for the excellent bifunctional electrocatalyst towards the co-production of adipic acid and H2 from cyclohexanone and water. The membrane-free flow electrolyzer of Cu0.81Ni0.19/NF shows the superior electrooxidation performance of ketone-alcohol (KA) oil with high faradaic efficiencies of over 90% for adipic acid and H2, robust stability over 200 h as well as a high yield of 0.6 mmol h−1 for adipic acid at 100 mA cm−2. In-situ spectroscopy indicates the Cu0.81Ni0.19 alloy contributes to forming more active NiOOH species to involve in the conversion of cyclohexanone to adipic acid, while the proposed reaction pathway undergoes the 2-hydroxycyclohexanone and 2,7-oxepanedione intermediates. Moreover, the theoretical calculations confirm that the optimal electronic interaction, boosted reaction kinetics as well as improved adsorption free energy of reaction intermediates, synergistically endows Cu0.81Ni0.19 alloy with superior bifunctional performance.
Read full abstract