Alberta foothills fescue grasslands are very productive ecosystems but there is concern that the traditional season-long (continuous) grazing regimes may be leading to soil deterioration due to compaction and increased soil strength. The objectives of this study were to quantify grazing effects on soil bulk density and soil strength of sloped areas in the Alberta foothills fescue grasslands at the Agriculture Canada Stavely Range Substation. The effects of two grazing intensities (heavy and very heavy) for two treatments (short duration and continuous) on these two parameters were compared to an ungrazed control. Soil bulk density and soil water to a depth of 7.5 cm were measured with a surface water/density gauge. Soil strength was measured with a hand-pushed cone penetrometer to a depth of 45 cm. Cone index, the maximum penetration resistance in a given depth interval, was used as a measurement parameter for soil strength.Grazing affected both soil bulk density and penetration resistance. Even short-duration treatments affected these soil properties, although their effects were similar for both heavy and very heavy grazing intensities. Distinction between heavy and very heavy continuous grazing treatments was clear for both bulk density and penetration resistance, with the very heavy treatment having the greatest detrimental effect on these two soil parameters for all treatments. Bulk density and soil strength values were always lowest in the spring after snowmelt and highest late in the growing season, reflecting the water status of these ecosystems. Identical treatment rankings were obtained using bulk density and penetration resistance, but cone index was a more sensitive indicator of the effects of grazing than bulk density. Key words: Grazing, fescue grasslands, bulk density, soil strength