PurposeThe purpose of this paper is to extend the authors’ previous contributions on aircraft flutter model parameters identification. Because closed-loop condition is more widely used in today’s practice, a closed-loop stochastic model of the aircraft flutter test is constructed to model the aircraft flutter process, whose input–output signals are all corrupted by the observed noises. Through using a rational transfer function, the equivalent property between the aircraft flutter model parameters and polynomial coefficients is established, and then the problem of aircraft flutter model parameters identification is turned to one closed-loop identification problem. An iterative identification algorithm is proposed to identify the unknown polynomial coefficients, being benefit for the latter flutter model parameter identification. Furthermore, as the closed-loop output corresponds to the flutter amplitude, so from the point of the minimization with respect to the variance of the closed-loop output, the optimal input signal and optimal feedback controller are all derived to achieve the zero flutter, respectively, for example, the optimal input spectrum and the detailed form for optimal feedback controller.Design/methodology/approachFirst, model parameter identification for aircraft flutter is reviewed as one problem of parameter identification and this aircraft flutter model corresponds to one closed-loop stochastic model, whose input signal and output are corrupted by external noises. Second, for aircraft flutter closed-loop statistical model with statistical noise, an iterative identification algorithm is proposed to identify the unknown model parameters. Third, from the point of minimizing with respect to the variance of the closed-loop output, the optimal input signal and optimal feedback controller are all derived to achieve the zero flutter, respectively, for example, the optimal input spectrum and the detailed form for optimal feedback controller.FindingsThis aircraft flutter model corresponds to one closed-loop stochastic model, whose input signal and output are corrupted by external noises. Then, identification algorithm and optimal input signal design are studied for aircraft flutter model parameter identification with statistical noise, respectively. It means the optimal input signal and optimal feedback controller are useful for the aircraft flutter model parameter identification within the constructed new closed-loop stochastic model.Originality/valueTo the best of the authors’ knowledge, this problem of the model parameter identification for aircraft flutter is proposed by their previous work, and they proposed many identification strategies to identify these model parameters. This paper proposes a new closed-loop stochastic model to construct the aircraft flutter test, and some related topics are considered about this closed-loop identification for aircraft flutter model parameter identification in the framework of closed-loop condition.