A new method of active flutter suppression is present in the paper and aims at the Light Sport Aircraft category, where it has never been used, designed, or even considered. The novelty of the method lies in splitting the control surface into a part controlled by a pilot with purely mechanical control and into a part controlled by a servo-actuator with a controller. The control law of the actuator is designed to follow the pilot-controlled part of the control surfaces and damp unstable oscillations if they occur. The controller design for flutter suppression is focused on achieving simple solutions. The request for simplicity is important for easy acquisition of airworthiness during a certification process and easy implementation by producers. The contribution of this paper also lies in the analysis of flutter suppression capability based on the varying active control surface span. The results show that it is not necessary to use the entire area of a control surface for active flutter suppression.A mathematical model based on a real aircraft is developed and verified for the simulation of active flutter suppression. In addition, control law design and simulations of the dynamic response are performed. The robustness of the control law and aircraft controllability in the case of active control surface malfunction is investigated.