We employed carbon dioxide (CO2) concentration monitoring using mobile devices to identify location-specific risks for airborne infection transmission. We lent a newly developed, portable Pocket CO2 Logger to 10 participants, to be carried at all times, for an average of 8 days. The participants recorded their location at any given time as cinema, gym, hall, home, hospital, other indoors, other outgoings, pub, restaurant, university, store, transportation, or workplace. Generalized linear mixed model was used for statistical analysis, with the objective variable set to the logarithm of CO2 concentration. Analysis was performed by assigning participant identification as the random effect and location as the fixed effect. The data were collected per participant (seven males, four females), resulting in a total of 12,253 records. Statistical analysis identified three relatively poorly ventilated locations (median values > 1,000 ppm) that contributed significantly (p < 0.0001) to CO2 concentrations: homes (1,316 ppm), halls (1,173 ppm), and gyms (1005ppm). In contrast, two locations were identified to contribute significantly (p < 0.0001) to CO2 concentrations but had relatively low average values (<1,000 ppm): workplaces (705 ppm) and stores (620 ppm). The Pocket CO2 Logger can be used to visualize airborne infectious transmission risk by location to help guide recommendation regarding infectious disease policies, such as restrictions on human flow and ventilation measures and guidelines. In the future, large-scale surveys are expected to utilize the global positioning system, Wi-Fi, or Bluetooth of an individual's smartphone to improve ease and accuracy.
Read full abstract