BackgroundUnderstanding the dynamics of airborne microbial communities and antibiotic resistance genes (ARGs) in space life support systems is important because potential pathogens and antibiotic resistance pose a health risk to crew that can lead to mission failure. There have been few reports on the distribution patterns of microbiomes and ARGs in space life support systems. In particular, there have been no detailed investigations of microbiomes and/or antibiotic resistance based on molecular methods in long-term confined bioregenerative life support systems (BLSSs). Therefore, in the present study, we collected air dust samples from two crew shifts, different areas, and different time points in the "Lunar Palace 365" experiment. We evaluated microbial diversity, species composition, functional potential, and antibiotic resistance by combining cultivation-independent analyses (amplicon, shot-gun sequencing, and qPCR).ResultsWe found that the bacterial community diversity in the Lunar Palace1 (LP1) system was higher than that in a controlled environment but lower than that in an open environment. Personnel exchange led to significant differences in bacterial community diversity, and source tracking analysis revealed that most bacteria in the air derived from the cabin crew and plants, but no differences in microbial function or antibiotic resistance were observed. Thus, human presence had the strongest effect on the succession of microbial diversity in the BLSSs.ConclusionsOur results highlight that microbial diversity in BLSSs is heavily influenced by changes in crew and is unique from other open and controlled environments. Our findings can be used to help develop safe, enclosed BLSS that meet the requirements of human survival and habitation in outer space. In addition, our results can further enhance our understanding of the indoor air microbial community and effectively maintain a safe working and living environment, including plant growth.